Allow Deny

This site uses cookies for retargeting.

Marina Rautenbach

Affiliation: Professor, BIOPEP Peptide Group, Stellenbosch University, Matieland, South Africa 

Short Biography:

PhD, University of Stellenbosch, Biochemistry

MSc, University of Pretoria, Biochemistry

BSc Hons, University of Pretoria, Biochemistry

BSc, University of Pretoria, Chemistry, Biochemistry, Mathematics

Current Research: 

The Biopep Peptide group investigates resistance towards, mechanism of action and structure-activity relationships (SAR) of antimicrobial peptides and membrane active antibiotics, using both natural and novel synthetic compounds. These antimicrobials are directed against a number of targets such as resistant bacterial pathogens in particular Listeria monocytogenes, fungal plant pathogens, as well as parasites causing malaria (Plasmodium falciparum) and African sleeping sickness (Trypanosoma brucei).
One of the major long term goals of our current research is to develop natural biocide formulations from  one or more of the peptide compounds in our libraries with promising antifungal and antibacterial activity. In particular, our the focus is currently on the development of antibiotic peptides produced by soil organisms as natural fungicides and antimicrobials for application in food preservation, agriculture and the medical field.


  1. Nieuwoudt M, Lombard N, Rautenbach M* (2014) Optimised purification and characterisation of lipid transfer protein 1 (LTP1) and its lipid-bound isoform LTP1b from barley malt.  Food Chemistry 157, 559–567, DOI: 10.1016/j.foodchem.2014.02.076

  2. Munyuki G., Jackson GE, Venter GA, Kövér KE, Szilágyi L, Rautenbach M,  Spathelf BM, Bhattacharya B and Van der Spoel D* (2013) b-Sheet structures and dimer models of two major tyrocidines, antimicrobial peptides from Bacillus aneurinolyticus,  Biochemistry, 44, 7798–7806, DOI: 10.1021/bi401363m

  3. Troskie AM, Vlok NM, Rautenbach M* (2012). A novel 96-well gel-based assay for determining antifungal activity against filamentous fungi. Journal of Microbiological Methods, 91, 551–558; DOI: 10.1016/j.mimet.2012.09.025

  4. Spathelf BM, Rautenbach M* (2009) Anti-listerial activity and structure–activity relationships of the six major tyrocidines, cyclic decapeptides from Bacillus aneurinolyticus, Bioorganic & Medicinal Chemistry 17, 5541–5548; DOI: 10.1016/j.bmc.2009.06.029

  5. Rautenbach M, Vlok NM, Stander M, Hoppe HC* (2007) Inhibition of malaria parasite blood stages by tyrocidines, membrane-active cyclic peptide antibiotics from Bacillus brevis, BBA Biomembranes, 1768, 1488-1497 ; DOI: 10.1016/j.bbamem.2007.01.015

  6. Rautenbach M*, Gerstner GD, Vlok NM, Kulenkampff J, Westerhoff HV (2006) Analyses of dose-response curves, to compare the antimicrobial activity of model cationic a-helical peptides, highlights the necessity for a minimum of two activity parameters, Analytical Biochemistry 350, 81-90; DOI: 10.1016/j.ab.2005.11.027

  7. Meincken M, Holroyd D L, Rautenbach M* (2005) An AFM study of the effect of antimicrobial peptides on the outer membrane of Escherichia coli, Antimicrobial Agents and chemotherapy, 49(10), 4085-4092; DOI: 10.1128/AAC.49.10.4085-4092.2005

  8. Vadyvaloo V, Arous S, Gravesen A, Héchard Y, Chauhan-Haubrock R, Hastings JW, Rautenbach M* (2004) Cell-surface alterations in class IIa bacteriocin resistant Listeria monocytogenes strains. Microbiology-SGM, 150, 3025-3033; DOI: 10.1099/mic.0.27059-0

  9. Vadyvaloo V, Hastings JW, Van der Merwe MJ, Rautenbach M* (2002) Membranes of class IIa bacteriocin-resistant Listeria monocytogenes contain increased levels of desaturated and short-acyl-chain phospatidylgycerols. Applied and Environmental Microbiology, 68, 5223-5230; DOI: 10.1128/AEM.68.11.5223-5230.2002

  10. Du Toit EA, Rautenbach M* (2000) A sensitive standardised micro-gel well diffusion assay for the determination of antimicrobial activity. Journal of Microbiological Methods, 42, 159-165; DOI: 10.1016/S0167-7012(00)00184-6

    For more publications see